Doyen-Wilson Results for Odd Length Cycle Systems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small embeddings for partial cycle systems of odd length

Let V(G) and E(G) denote the vertex and edge sets of a graph G respectively. Let Z, = (0, 1, . . . , n l}. Let K,, be the complete graph on n vertices. An m-cycle is a simple graph with m vertices, say uo, . . . , u,__~ in which the only edges are uou,_i and the edges joining ui to Ui+l (for 0 s i 6 m 2). We represent this cycle by (uo, . . . , u,_J or (uo, u,_~, u,_~, . . . , ul) or any cyclic...

متن کامل

The Doyen Wilson Theorem for Minimum Coverings with Triples

In this article necessary and sufficient conditions are found for aminimum covering ofKm with triples to be embedded in a minimum covering ofKn with triples. c © 1997 JohnWiley & Sons, Inc. J Combin Designs 5: 341–352, 1997

متن کامل

Two Doyen-Wilson theorems for maximum packings with triples

In this paper we complete the work begun by Mendelsohn and Rosa and by Hartman, finding necessary and sufficient conditions for a maximum packing with triples of order m MPT(m) to be embedded in an MPT(n). We also characterize when it is possible to embed an MPT(m) with leave LI in an MPT(n) with leave L2 in such a way that L1 C L2.

متن کامل

The Doyen-Wilson Theorem Extended to 5-Cycles

Let ~m = {0, 1 . . . . , m 1}. A n m-cycle is a graph (v0, V l , . . . , u~_ 1) with vertex set {viii ~ E m} and edge set {{vi, Vi+a}]i ~ 7/m} (reducing the subscript modulo m). A n m-cycle system of a graph G is an o rdered pair (V, C), where V is the vertex set of G and C is a set of m-cycles, the edges of which part i t ion the edges of G. A n m-cycle system (of order n) is an m-cycle system...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Designs

سال: 2015

ISSN: 1063-8539

DOI: 10.1002/jcd.21431